Presynaptic CK2 promotes synapse organization and stability by targeting Ankyrin2

نویسندگان

  • Victoria Bulat
  • Melanie Rast
  • Jan Pielage
چکیده

The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Presynaptic Giant Ankyrin Stabilizes the NMJ through Regulation of Presynaptic Microtubules and Transsynaptic Cell Adhesion

In a forward genetic screen for mutations that destabilize the neuromuscular junction, we identified a novel long isoform of Drosophila ankyrin2 (ank2-L). We demonstrate that loss of presynaptic Ank2-L not only causes synapse disassembly and retraction but also disrupts neuronal excitability and NMJ morphology. We provide genetic evidence that ank2-L is necessary to generate the membrane constr...

متن کامل

Transsynaptic Coordination of Synaptic Growth, Function, and Stability by the L1-Type CAM Neuroglian

The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the D...

متن کامل

Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton

Loss of spectrin or ankyrin in the presynaptic motoneuron disrupts the synaptic microtubule cytoskeleton and leads to disassembly of the neuromuscular junction (NMJ). Here, we demonstrate that NMJ disassembly after loss of alpha-spectrin can be suppressed by expression of a Wld(S) transgene, providing evidence for a Wallerian-type degenerative mechanism. We then identify a second signaling syst...

متن کامل

Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons

Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecul...

متن کامل

Hierarchical microtubule organization controls axon caliber and transport and determines synaptic structure and stability.

The dimensions of axons and synaptic terminals determine cell-intrinsic properties of neurons; however, the cellular mechanisms selectively controlling establishment and maintenance of neuronal compartments remain poorly understood. Here, we show that two giant Drosophila Ankyrin2 isoforms, Ank2-L and Ank2-XL, and the MAP1B homolog Futsch form a membrane-associated microtubule-organizing comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2014